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(Leningrad) 
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Non-self-balanced homogeneous solutions of the mixed plane problem of elasti- 
city theory for and infinite wedge--a < 6 < a, 0 < r < 30, one part of whose 

boundary 6 = f CL, 0 Q r < 1 is under the conditi- 
ons of sliding constraint and the other is stress-free, 
are constructed and investigated. The solutions are of 

independent interest since they determined the state 
of stress of a wedge (a wedgelike strip in an elastic 
plane) on which a load equivalent to a longitudinal 
force P, a transverse force Q and a moment M (see 

Fig. 1) acts through a stiff yoke (a wedgelike stamp). 
Together with the statically balanced homogeneous 

solutions, they form a system of functions needed to 
solve mixed problems for elastic finite sectorial dom- 

by ains by the method elucidated in [l]. 

Fig. 1. 

1. Symmetric problem. Let us write the condition on the wedge boundary 
for 6 = j, a: 

Us,= 0 for 0 < r .< 1, 0s = 0 for 1< r < x 0.1) 

%-e = 0 for 0 -< r < 03 (1.2) 

60 _ (1 - r)E-l for r ----f 1 - 0 (e > 0) (1.3) 
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In the Papkovich-Neuber formulas for the elastic displacements p] 

2Cu~=x(QlcOS6+Q,Lsin0)-r cos0T+sin67 -- 
C 

8% 3% 30" 

1 ar 

2GU,=x(@zCOS0- Qlsin@)- 
! 

a@1 a@, 
cos0,e+Sin0~ 

1 

1 N&J 
-F- 

ae 

(C is the shear modulus, x = 3-4 Y and Y is the Poisson ratio), let us set 
Q0 = 0, Q1 = F,, Qz = F, 

1 
F1 = 2ni 

s 

1 
[ A1 (p) + A~ (p)] cos pf3rmPdpp, FA = 2ni 

s 
[A (p) - Ati (pII sin pOrmPdp 

L L 
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(1.4) 

(1.5) 

(1.6) 

let Us select the path of integration L between the imaginary axis and the pole h of 
the integrands closest to it in the half-plane Re p < 0 . Inserting the Mellin transforms 
for 6 = a 

G+ (p) = j a,r Pdr, 

m 

u- (p) = 
1 
’ u, rp-‘dr (1.7) 

0 1 

and utilizing their inverses, from conditions (I. I), (1.2) we obtain the System 

Al(p)@ + x)Sin (P - l)a + A&)(P - Nsin(p + f)a = 2Gu-(P) (1.8) 

A,(P)(P + x) 03s (P - i)a + AAP)(P - 1) cos (P + l)a. = P-‘s+(p) (1.9) 

A,(P)P(P + 4 sin (P - l)a + Az.(P)(P + 1)~ sin (P + lb = 0 (1 .iO) 

From (1.9), (1.10) we find 
(1.11) 

A,(P) = -u+(P)(P + l)p sin (P + l)aD2-‘(P), A,(P) = U+(P)P(P + x) sin (P - l)aD2-VP) 
D,(p) = - p2(p + x)(p sin 2a + sin 2pa) (1.12) 

According to (1.8) the functions a+(p) and u-(p) are related by the Wiener-Hopf equa- 
tion 

U’(P) = NPW(P)t C(P) = &(P)Dl-‘(P) (1.13) 
D,(P) = -2G-ip(p + x)(i - v) sin (p - i)a sin (p + 1)a (2.14) 

The function K(p) is meromorphic and even. Its poles in the right half-plane Rep > 0 
are determined by the formulas 

pkl - 
(l) - kne-’ - i, pp. = (k - 1) xc’ + 1 (k = 1, 2, . . .) 

and the asymptotics of the large complex zeroes p $, pg has the form [3, 41: p$f II $2, 

pg = (k - l/4) xc1 + i (2~2)~’ In [(k - l/3) xc1 sin 2x1 + 0 (k-l In k) for a < l/?n (1.15) 

pg = (k - “/a) na-’ f i (2~4~~ In [(“/r - k) me1 sin 2x1 + 0 (k-1 In k) for CL > l/:n (1.16) 

For a - llzn the pairs of complex zeroes successively go over into pairs of real zeroes; 
it is then considered that py. > Pfi. 

The character of the pole and zero distribution of the function K(p) permits its factor- 
ization as follows in the general case: 

K (p) = K*p2K- (P) ! K+ (p)l-’ (1.17) 

G (2a + sin 2~2) 1 
h’*=- 

2 (1 -v) sin” a ’ K- (P) = K+ (_ p) 

K+ (P) = fi (1 f P/P’,‘,‘) (1 + P/P~‘) (1 + P/P$)-’ (1 + PIP p$-’ 

(1.18) 

(1.19) 

k=l 

For a = l!~n another factorization is expedient 
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K (p) = K*p2K- (P) I K+ (p)l-‘v K* = - ‘/zG (1 - v)-’ 
K+ (p) = [K- (- p)]-’ = r (1 + ‘lap) I?-’ (‘/I + ‘hp) 

The foundation for the absolute and uniform convergence of the infinite product (1.19) 
and its asymptotic behavior in the right half-plane Rep > Rek, of the form 

K+ (P) - (sin a)-’ v(a + l/z sin 2a)p for p ---, 30 (1.20) 

are easily obtained by following [4]. The author of [3] first made a detailed investigation 
of the questions associated with the exact factorization of the type (1.17) - (1.19). The 
structure of the product (1.19) is such that for p* real and positive the following inequal- 
ities hold: 

K+ (P*) > 0, K-(-p*)>0 (1.21) 

Taking account of the regularity of the functions with superscripts plus and minus, res- 
pectively,in the half-planes Re p > Reh and Re p < 0, we obtain a solution of (1.13) 
on the basis of the condition (1.3), the estimate (1.20) and the generalized Liouville 

theorem [S] a+ (p) = 71 [K+ (P)I-’ (1.22) 

Substituting (1.22) into (1.11) and then into (1.6) and (1.4), we find a symmetric solu- 
tion of the problem (1.1) - (1.3) 

1 

lA =4niG P 
B (p) [(p + x) sin (p - 1) a cos (p + 1) 0- (P t 1) sin (p f 1) a cos (p--l)0]3 

L 

tie=-& ~(P)[(p-~)sin(p-l)asin(p+1)~-((p+~)sin(P+l)~sin(p-l)~]~ c 
dP 

L” 
(1.23) 

z re = &-B (p) p (p + 1) [sin (p + 1) r sin 0 - 1) 0 - sin @ - 1) a sin (P + 1) 6]-$ 

1 
% = 2ni c 

B(p) p ((p - 1) sin (p - 1) 2 cos (p + 1) 0 - (P f 1) sin (P f 1) a ~0s (p - 1) 01 X 
i 

Gr=& O(P)P[(P$.l) 
$ 

sin (p + 1) z c,os (p - 1) 0 - (p + 3) sin (p - 1) a cos (p + 1) 01X 

L 

+i 

13 (P) = TIP (P + 4 [K+ (P) u,. WI- I= Tlp-'(p +x) [k'*KT(p) ul(!J)l-l (1.2i) 

According to the first part of the identity (1.24) for r > 1 the integral (1.23) can be 
decomposed into a series of residues taken at the zeroes of the function Dz (p) from the 
half-plane Rep > Reh. The stresses determined by all the zeroes except P=O are 
hence self-balanced. The residues at the pole p = 0 connects the quantities P and ?il 
by means of the relationship 

y1 = -- P(2sina)-’ (1.25) 

It will yield the grolRth of the displacements at infinity 

“0 U 
_=-JZZ I’(1 -v)lrir +o(l) 

sin0 cos u C (2% + sin 22) 
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According to the second part of (1.24), the stresses at the wedge apex are determined 
by the first members of the expansion of the integrals (1.23) in a series of residues at 
the negative zeroes of the function Dr(p).For cc < r/zn these stresses are compressive by 

virtue of (1.21). finite and independent of the angle 8 

P sin aK+ (1) 
‘0 = a, = - a (2a + sin 2a) + 0 (r=‘a-2), Tre = 0 (r+? (1.29 

For CL > */in the stresses at the apex of a wedgelike notch become infinite, where their 
intensity and orders of growth depend on 6 and a: 

&I 5, IT l-e P (a - ‘/an) sin ar n/a-s 

cos (nz-10) = - cos (m-10) = sin @a-W) = a (n - a) (2a + sin 2a) K- (1 - zla) + 0 (1) 

(1.27) 
The relationships (1.27) show that the greatest discontinuous a0 and compressive U, 
normal stresses originate on the continuation of the notch axis, while the greatest shear 

stresses originate on the bisectrices 0 = + +a separating the tension from the compress- 
ion zones. As the angle varies between ‘/~a and TC the order of growth of the stresses in- 

creases monotonely from r” to r-1 as r -.+ 0 . 

The estimates (1.26), (1.27) diverge from the corresponding formula (2.6) of [63. For 
a = S/an: the exponents of r differ by 12%, and for a < l/%x formula (2.6) yields infinite 

stresses at the wedge apex. The reason for such a discrepancy is possibly that this line 
us = S, describing the boundary of a flat stamp in [S], is a hyperbolic spiral, and it can 

be taken as a line only in those cases when the flat stamp is sufficiently far from the 

wedge apex. 
This remark also refers to n] in which it would be correct to substitute the conditions 

us = 0 (0 < r < a) and ~0 = + h (b < r < x) for 8 = 0 in place of the conditions 
zdg = f IL(O < r Q a) and us - 0 (b < r < ,=) which are incompatible with the condi- 

tion us = 0 for 6 = h& a. r= 0 in problem (1). 
The tensile stresses os > 0, originate for the changes mentioned at the apices of the 

wedge of problem (2), i.e., the slit edges depart from the smooth plate imbedded 

therein. 
Because of the origination of tension zones, solutions of the mixed problem for an in- 

finite wedge considered in [S] can also not be realized, where the principal stress vector 

equals zero for r > 1 and therefore any zone of compressive stresses under the contact 
surface can be balanced only by a tensile zone. 

Let us find the stress distribution under the edges of the yoke (stamp). Substituting 

(1.20) and (1.25) into (1.22), we obtain 

G+ (P) --P[2(2a+ sin2a)p]-“P for p-00, Rep>0 (1.28) 

From the relationships connecting the asymptotics of the functions with their Mellin 
transformations [S], and from the estimate (1.28) it follows that these stresses are com- 

pressive 

60 - - P [2n (2a f sin 2a) (1 - r)]+ for r -f 1 - 0, 0 = a (1.29) 

2. Skaw symmetric problem. Let us first examine the problem with the in- 
homogeneous boundary condition 

u0 =6r for O,<r<l, bg = 0 for 1 <r < -70 (0 = f a) (2.1) 
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and conditions (1.2), (1.3). Setting c&, = 0, cPz = F,, DI = - F, into (1.4), we ob- 
tain a system of equations from (2.1) and (1.2) 

A&)(x - P) cos (P + l)a + A,(P)@ + P) cos (P - l)a = 2G[u-(P) + QJ + I)-‘1 
A,(p)(p - 2) sin (p + l)a - A,(p)(z + p) sin (p - l)a = p-‘a’(p) (2.2) 

A,(P)(P + 1) cos (P + lb - A,(PW + P) cos (P - l)a = 0 

Hence. the unknowns A,(p) and A,(p) are expressed by the formulas 

A,(p) = a+(P)P(P + 1) cos (P + l)@,‘(P) (2.3) 

A,(p) = a+(P)P(P + XI cm (P - lW,‘(P) 
D,(p) = pa(p + x)(p sin 2a - sin Zpa) 

and the Wiener-Hopf equation becomes 

G’(P) = N(p)[u-(p) + h(P + 1J-4 
N(P) = uP)q(P), D,(P) = 2G-‘P(P + x)(1 - v) cos (p + 1)a cos (p - l)cc 

(2.4) 

For a # ‘/zn the function N(p), which has a double zero at the point p = 0,is factorized 
exactly as the function K(p) 

N*/;zN- (p) G (sin 2a - 231) 1 
N (I’) = Nf (pi 9 N* =2(l -Y) co9261 ’ N- (P) = N+ (_- p) (2.5) 

N+(p) = ip (1 +plp# (1 +p/p$) (1 +I,//$$‘(1 + P/P&%’ 

k=l 

Here pfi, bpf!i and pg, J &) are the poles and zeroes of the function N(p) in the half- 
plane Rep > 0. 

For a < llrn and cc > ‘/an the asymptotics of the large complex zeroes*~g’ is deter- 
mined by (1.16) and (1.15) respectively, pg) =- pp,) . The formulas for the poles are 

p’,’ = pp; - 2 = (k - ‘/2)nx-’ - 1 for a< ‘lzn (k = 1,2, . . .) 

p$ = (k + l/&m- 1 - 1, p&) = (k - 8/-2)na-* + 1 for a > l/gc (k = 1,2, . . .) 

For cz = %n, N(0) # 0, hence the function N(p) is factorized into 

N(p) = nN (0) iv- (P) [N+ (P)I-‘7 N (0) = 2C~t-~ (1 - v)-’ (2.6) 
N+ (p) = [N- (- p)]-’ = r(*/s + %P) l-‘-l (i+ ‘/zP) 

From (2.4). we obtain by the usual means 

g+ (p) = [rz + 6 (p + I)-‘N- (- 1) N*] [N+ (p)I-’ for a # I/S (2.7) 
5+ (p) = 6 (p + l)%N-(-1) (0) [N+ (p)]-l for a = %n 

Substituting (2.3) into (1.6) and, (1.4) we find the skew-symmetric solution of the prob- 

lem (1.1) - (1.3) in which rotation of the wedge induced by condition (2.1) is taken 
into account in us by the member br: 

1 
- - %- 4&G 5 C (p) I(p -l- x) cos (P - 1) a sin (p + 1) 0 - (P + 1) cm (p + 1) a sin (p - I) RJ x 

L 

x r-*dp 
1 

- ue = - 6r + &iC 
s 

C (P) 1(x - P) co.3 (P - 1) a cos (P + 1) f3 + 
L 

+ (p + 1) c.os (p + 1) a cos (p - 1) 81 0’dp (2.8) 

t rO= .& ’ C (p) p (p + 1) [cos (p - 1) a cos (p + 1) 0 - cos (p + 1) a cos (p - 1) O] r-P-ldp \ * 
I* 
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oe=& C(p)p[(p-l)cos(p--1)asin(p+1)e - s 
L 

- (p + 1) cos (p + 1) a sin (p - 1) 61 rmP-ldp 

6r = & 
s 

C (p) [(p + 1) ~0s @ + 1) cf sin (p - 1) 0 - 
L 

c(P)=~@+X)O+(~)D~1(p)=p(p+~)[~-@)+~@+~)-’l~;’@) 

Evaluating the residues of the integrands of (2.8) at the poles p = 0 and p = i, we ob- 
tain from the equilibrium equations 

Q 
72 =-2cosa 

N+(i) Q - - -MN+ (I), 6 = *,* 
[ 
=a +;MN+(i)] for u#‘/an 

i? = -2M(l - v)C-‘n-1 for a = r/.fl 

The displacements at infinity and the stresses at the wedge apex and under the edges 

of the yoke (stamp) are found by analogy with the previous section. For r - 00 and 
a # rlzn we have 

Y) sin 0 
% --ar+o(lnr), ar-~tii2z_ (2.9) 

For r + 0 and cr < %n, taking into account that the integrands of (2.8) have elimin- 
able singularities at the point P = - i and the first pole is at the point P = @, we 
obtain se Q z re 

-Xj% 
=P=_=-- 

sin @!I co9 pe 
rpm2 cos aN+ (B - 1) [MN+ (1) co9 a + 

a (2a - sin 2a) 

+ 2*a] + 0 (r% B = llzna-l (2.10) 

Therefore, the stresses at the wedge apex are infinite for a > ‘Iarc. For r - 0 and 
o > '/2X the residues at the pole p = p$ yield 

% Qt z 

= - (4u + n) sin /30 
=_= 

rt cZ@3 
r-n cos UN+ (I- p) 

(4a - n) sin b6 fiu (2a - sin 2a) 
Q (4~ - n) + 
4a - 2x 

+ MN+ (1) COB c1] + 0 (r3P-2) (2.11) 

For r -tl-0, 0=a, afrlanwe obtain 

Icosal 
se - - 

v3-c (2a - sin 2a) (1 -r) L 2MN+ (‘) + ~5iik 1 (2.12) 

5, To utilize the considered solutions in contact problems it is necessary that the 
normal stresses at the wedge apex and under the yoke (stamp) edges not be tensile, i.e., 
the condition 

Ge GO for 6=&a, r-t0 and r-l-0 (3.1) 

must be satisfied. 
As formulas (1.26) (1.27) and (1.29) show, the symmetric solution satisfies this con- 

dition for all a. The skew symmetric solution evidently.always has a tension zone on 
the line of contact and cannot be realized separately. 

According to (1.26) (1.27) and (2. lo), (2.11) the stresses at the wedge apex are in 
the general case 

de = s1 (u) rt1(3 f sa (a) rfrca) * s8 (u) rfa@) for 0 = t_ a (3.2) 
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Here the first member characterizes the symmetric part in which si(cz) < 0 for P > 0, 
the second and third members are skew symmetric. It ‘is easy to verify that tr(cc) < t,(o) 
for all cc, while tr(a) < tn(a) in the intervals (u, ‘/in) and (3/4~, n) ,and tr(a) > &(a) 
in the interval (l/4n, 3/4n). 

Therefore, if 9 < CL < ‘Len or S/m < a < n then for any values of Q and M and for 
P > 0 there is an rr such that compressive stresses a, < 0 originate in the segments 

O\<r<rr,0=fa. To satisfy the remaining portion of condition (3. l), it is nece- 
ssary and sufficient that the inequality 

P v/2%---sin2a >~2MN+(%)cosa+Q~ 64a-i-2sin2a (3.3 1 

be satisfied by virtue of the estimates (1.29) and (2.12). 

For r/an < a < */4n condition (3.1) holds, according to (2. lo), (2.11) and (3.2) only 
when s,(a) = 0 together with condition (3.3). i. e. when the force and moment are 
connected by the equalities 

Qn = M(4a - 2n)N+(i) cos a for ?fbn < a < ’12s 

Q@ - 4a) = M(4a - 2n)N+(i) cos a for V2 < a < Van 

TO assure strict adherence to these equalities in practice is impossible. Hence, it is 
CmeCt to consider that for r/m < a < 1/2n and for r/sn < a < s~4n the solution (1.2) is 
mechanically unrealizable even in the symmetric case for the yoke (stamp) will depart 
from ,an elastic wedge for the smallest violation of symmetry. 

The question of the sufficiency of the condition (3.1) for compact abutment of the 

contacting surfaces requires still another approach and will be examined separately. 
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